112 research outputs found

    Anthropogenic emissions of NO x over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements

    Get PDF
    Abstract Inverse modeling using satellite observations of nitrogen dioxide (NO 2 ) columns has been extensively used to estimate nitrogen oxides (NO x ) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO 2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respectively. Anthropogenic NO x emission estimates by applying previously developed monthly inversion (MI) or daily inversion (DI) methods to these two sets of measurements show substantial differences. We improve the DI method by conducting model simulation, satellite retrieval, and inverse modeling sequentially on a daily basis. After each inversion, we update anthropogenic NO x emissions in the model simulation with the newly obtained a posteriori results. Consequently, the inversion-optimized emissions are used to compute the a priori NO 2 profiles for satellite retrievals. As such, the a priori profiles used in satellite retrievals are now coupled to inverse modeling results. The improved procedure was applied to GOME-2 and OMI NO 2 measurements in 2011. The new daily retrieval-inversion (DRI) method estimates an average NO x emission of 6.9 Tg N/yr over China, and the difference between using GOME-2 and OMI measurements is 0.4 Tg N/yr, which is significantly smaller than the difference of 1.3 Tg N/yr using the previous DI method. Using the more consistent DRI inversion results, we find that anthropogenic NO x emissions tend to be higher in winter and summer than spring (and possibly fall) and the weekday-to-weekend emission ratio tends to increase with NO x emission in China

    Ozone deposition impact assessments for forest canopies require accurate ozone flux partitioning on diurnal timescales

    Get PDF
    Dry deposition is an important sink of tropospheric ozone that affects surface concentrations and impacts crop yields, the land carbon sink, and the terrestrial water cycle. Dry deposition pathways include plant uptake via stomata and non-stomatal removal by soils, leaf surfaces, and chemical reactions. Observational studies indicate that ozone deposition exhibits substantial temporal variability that is not reproduced by atmospheric chemistry models due to a simplified representation of vegetation uptake processes in these models. In this study, we explore the importance of stomatal and non-stomatal uptake processes in driving ozone dry deposition variability on diurnal to seasonal timescales. Specifically, we compare two land surface ozone uptake parameterizations - a commonly applied big leaf parameterization (W89; Wesely, 1989) and a multi-layer model (MLC-CHEM) constrained with observations - to multi-year ozone flux observations at two European measurement sites (Ispra, Italy, and Hyytiala, Finland). We find that W89 cannot reproduce the diurnal cycle in ozone deposition due to a misrepresentation of stomatal and non-stomatal sinks at our two study sites, while MLC-CHEM accurately reproduces the different sink pathways. Evaluation of non-stomatal uptake further corroborates the previously found important roles of wet leaf uptake in the morning under humid conditions and soil uptake during warm conditions. The misrepresentation of stomatal versus non-stomatal uptake in W89 results in an overestimation of growing season cumulative ozone uptake (CUO), a metric for assessments of vegetation ozone damage, by 18 % (Ispra) and 28 % (Hyytiala), while MLC-CHEM reproduces CUO within 7 % of the observation-inferred values. Our results indicate the need to accurately describe the partitioning of the ozone atmosphere-biosphere flux over the in-canopy stomatal and non-stomatal loss pathways to provide more confidence in atmospheric chemistry model simulations of surface ozone mixing ratios and deposition fluxes for large-scale vegetation ozone impact assessments.Peer reviewe

    Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis

    Get PDF
    Future projections of climate extremes are expected to become more frequent. Parts of Europe experienced an extensive heatwave and drought during 2018. However, its impacts on terrestrial carbon cycle remain elusive. Here we investigated the vegetation responses to the heatwave and drought during 2018 based on satellite solar-induced chlorophyll fluorescence (SIF) and near-infrared reflectance (NIRv) data, which were used to estimate gross primary productivity (GPP). Results showed that there were no significant (p= 0.60) reductions in GPP across most of Europe during April-August of 2018. The higher temperatures in spring enhanced vegetation GPP, largely alleviated the negative impacts of heatwave and drought on vegetation photosynthesis during the subsequent summer, which resulted in evident compensation effects. Concurrently, warmer spring also had lagged effects by diminishing soil moisture, accompanied by scarce precipitation, leading to water stress on plant growth during summer. This observation-based study highlights the need for more considerations of seasonal compensation and lagged effects on the interactions between climate extreme events and biosphere.Peer reviewe

    Persistently elevated levels of sST2 after acute coronary syndrome are associated with recurrent cardiac events

    Get PDF
    Purpose Higher soluble ST2 (sST2) levels at admission are associated with adverse outcome in acute coronary syndrome (ACS) patients. We studied the dynamics of sST2 over time in post-ACS patients prior to a recurrent ACS or cardiac death. Methods We used the BIOMArCS case cohort, consisting of 187 patients who underwent serial blood sampling during one-year follow-up post-ACS. sST2 was batch-wise quantified after completion of follow-up in a median of 8 (IQR: 5-11) samples per patient. Joint modelling was used to investigate the association between longitudinally measured sST2 and the endpoint, adjusted for gender, GRACE risk score and history of cardiovascular diseases. Results Median age was 64 years and 79% were men. The 36 endpoint patients had systematically higher sST2 levels than those that remained endpoint free (mean value 29.6 ng/ml versus 33.7 ng/ml, p-value 0.052). The adjusted hazard ratio for the endpoint per standard deviation increase of sST2 was 1.64 (95% confidence interval: 1.09-2.34; p = 0.019) at any time point. We could not identify a steady or sudden increase of sST2 in the run-up to the combined endpoint. Conclusion Asymptomatic post-ACS patients with persistently higher sST2 levels are at higher risk of recurrent ACS or cardiac death during one-year follow-up

    Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation

    Get PDF
    Solar-induced fluorescence (SIF) data from satellites are increasingly used as a proxy for photosynthetic activity by vegetation and as a constraint on gross primary production. Here we report on improvements in the algorithm to retrieve mid-morning (09:30 LT) SIF estimates on the global scale from the GOME-2 sensor on the MetOp-A satellite (GOME-2A) for the period 2007-2019. Our new SIFTER (Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval) v2 algorithm improves over a previous version by using a narrower spectral window that avoids strong oxygen absorption and being less sensitive to water vapour absorption, by constructing stable reference spectra from a 6-year period (2007-2012) of atmospheric spectra over the Sahara and by applying a latitude-dependent zero-level adjustment that accounts for biases in the data product. We generated stable, good-quality SIF retrievals between January 2007 and June 2013, when GOME-2A degradation in the near infrared was still limited. After the narrowing of the GOME-2A swath in July 2013, we characterised the throughput degradation of the level-1 data in order to derive reflectance corrections and apply these for the SIF retrievals between July 2013 and December 2018. SIFTER v2 data compare well with the independent NASA v2.8 data product. Especially in the evergreen tropics, SIFTER v2 no longer shows the underestimates against other satellite products that were seen in SIFTER v1. The new data product includes uncertainty estimates for individual observations and is best used for mostly clear-sky scenes and when spectral residuals remain below a certain spectral autocorrelation threshold. Our results support the use of SIFTER v2 data being used as an independent constraint on photosynthetic activity on regional to global scales.</p

    New observations of NO2 in the upper troposphere from TROPOMI

    Get PDF
    Nitrogen oxides (NOx≡NO+NO2) in the NOx-limited upper troposphere (UT) are long-lived and so have a large influence on the oxidizing capacity of the troposphere and formation of the greenhouse gas ozone. Models misrepresent NOx in the UT, and observations to address deficiencies in models are sparse. Here we obtain a year of near-global seasonal mean mixing ratios of NO2 in the UT (450–180 hPa) at 1∘×1∘ by applying cloud-slicing to partial columns of NO2 from TROPOMI. This follows refinement of the cloud-slicing algorithm with synthetic partial columns from the GEOS-Chem chemical transport model. TROPOMI, prior to cloud-slicing, is corrected for a 13 % underestimate in stratospheric NO2 variance and a 50 % overestimate in free-tropospheric NO2 determined by comparison to Pandora total columns at high-altitude free-tropospheric sites at Mauna Loa, Izaña, and Altzomoni and MAX-DOAS and Pandora tropospheric columns at Izaña. Two cloud-sliced seasonal mean UT NO2 products for June 2019 to May 2020 are retrieved from corrected TROPOMI total columns using distinct TROPOMI cloud products that assume clouds are reflective boundaries (FRESCO-S) or water droplet layers (ROCINN-CAL). TROPOMI UT NO2 typically ranges from 20–30 pptv over remote oceans to >80 pptv over locations with intense seasonal lightning. Spatial coverage is mostly in the tropics and subtropics with FRESCO-S and extends to the midlatitudes and polar regions with ROCINN-CAL, due to its greater abundance of optically thick clouds and wider cloud-top altitude range. TROPOMI UT NO2 seasonal means are spatially consistent (R=0.6–0.8) with an existing coarser spatial resolution (5∘ latitude × 8∘ longitude) UT NO2 product from the Ozone Monitoring Instrument (OMI). UT NO2 from TROPOMI is 12–26 pptv more than that from OMI due to increase in NO2 with altitude from the OMI pressure ceiling (280 hPa) to that for TROPOMI (180 hPa), but possibly also due to altitude differences in TROPOMI and OMI cloud products and NO2 retrieval algorithms. The TROPOMI UT NO2 product offers potential to evaluate and improve representation of UT NOx in models and supplement aircraft observations that are sporadic and susceptible to large biases in the UT.This research has been supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (through the Starting Grant awarded to Eloise A. Marais, UpTrop (grant no. 851854))
    • …
    corecore